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We present the growth dynamics of an island of particlesA injected from a localizedA source into a sea of
particlesB and dying in the course of diffusion-controlled annihilationA+B→0. We show that in the one-
dimensional(1D) case the island grows unlimitedly at any source strengthL, and the dynamics of its growth
does not depend asymptotically on the diffusivity ofB particles. In the 3D case the island grows only at
L.Lc, achieving asymptotically a stationary state(static island). In the marginal 2D case the island unlimit-
edly grows at anyL but at L,L* the time of its formation becomes exponentially large. For all cases the
numbers of surviving and dyingA particles are calculated, and the scaling of the reaction zone is derived.
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For the last two decades the reaction-diffusion systemA
+B→0, where unlike speciesA andB diffuse and irrevers-
ibly react in ad-dimensional medium, has acquired the status
of one of the most popular objects of research. This attrac-
tively simple system, depending on the initial conditions,
displays a rich variety of phenomena, and, depending on the
interpretation ofA andB (chemical reagents, quasiparticles,
topological defects, etc.), it provides a model for a broad
spectrum of problems[1]. A crucial feature of many such
problems is the dynamicalreaction front—a localized reac-
tion zone which propagates between domains of unlike spe-
cies. The simplest model of a reaction front, introduced more
than a decade ago by Galfi and Racz[2], is a quasi-one-
dimensional model for two initially separated reactants uni-
formly distributed on the left sidesx,0d and on the right
side sx.0d of the initial boundary. Taking the reaction rate
in the mean-field formRsx,td=kasx,tdbsx,td (k being the
reaction constant) Galfi and Racz discovered that in the long-
time limit kt→` the reaction profileRsx,td acquires the uni-
versal scaling form

R= RfQSx − xf

w
D , s1d

wherexf ~ t1/2 denotes the position of the reaction zone cen-
ter, Rf ~ t−b is the height, andw~ ta is the width of the reac-
tion zone. Subsequently, it has been shown[3–7] that the
mean-field approximation can be adopted atdùdc=2 [with
logarithmic corrections in the two-dimensional(2D) case],
whereas in 1D systems fluctuations play the dominant role.
Nevertheless, the scaling law(1) takes place in all dimen-
sions witha=1/6 atdùdc anda=1/4 atd=1, so that at any
d the system demonstrates a remarkable property: on the
diffusion length scaleLD~ t1/2 the width of the reaction front
asymptotically contracts unlimitedly:w/LD→0 as t→`.
Based on this property a general concept of the front dynam-
ics, the quasistatic approximation(QSA), has been devel-
oped[3,5,8,9]. The QSA consists in the assumption that for
sufficiently long times the dynamics of the front is governed
by two characteristic time scales. One time scale
tJ=−sd ln J/dtd−1 controls the rate of change in the diffusive

currentJ=JA=JB of particles arriving at the reaction zone.
The second time scaletf ~w2/D is the equilibration time of
the reaction front. Assumingtf / tJ!1 from the QSA in the
mean-field case with equal species diffusivitiesDA,B=D it
follows that [3,8]

Rf , J/w, w , sD2/Jkd1/3, s2d

whereas in the 1D casew acquires thek-independent form
w,sD /Jd1/2 [3,5,9]. The most important feature of the QSA
is that w and Rf depend ont only through the boundary
current Jstd, which can be calculated analytically without
knowing the concrete form ofQ. On the basis of the QSA a
general description of the systemA+B→0 with initially
separated reactants has been obtained for arbitrary diffusion
coefficients[10]. These results are in full agreement with
extended numerical calculations and have been generalized
recently to the case of nonmonotonic front motion[11].

The purpose of the present paper is to apply the QSA to
the long-standing problem of growth of anA-particle island
from a localizedA source in a uniformB-particle sea. This
important problem was first analyzed by Larraldeet al. [12]
for the special case of a static seasDB=0d. Assuming that
diffusing A particles are injected at a single point into a
reactived-dimensional substrateB and instantaneously react
with B upon contact, Larraldeet al. have studied the growth
dynamics of the reacted region radiusr fstd and the numbers
of dying and survivingA particles. Considering the reaction
front dynamics as a Stefan problem, they have, in particular,
shown that at any source strengthr f asymptotically grows by
the laws st ln td1/2, t1/2, and t1/3 at d=1, 2, and 3, respec-
tively. Subsequently, those results were generalized to the
cases of imperfect reaction[13] and diffusion with a bias
[14]; however, as in[12], the B particles were always pre-
sumed “frozen.” In this Brief Report we present a theory of
growth of ad-dimensionalA island for the physically most
important situation when bothA andB particles are mobile.
In the framework of the QSA we first consider the simplest
“standard” case with equal species diffusivities, and then we
extend the obtained results to the case of arbitrary nonzero
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diffusivities, thus revealing a rich general picture of the is-
land growth ford=1, 2, 3.

Let particlesA be injected attù0 with a rateL at the

point rW=0W of the uniformd-dimensional sea of particlesB,
distributed with a densityr. ParticlesA and B diffuse with
nonzero diffusion constantsDA,B and upon contact annihilate
with some nonzero probability,A+B→0. In the continuum
version this process can be described by the reaction-
diffusion equations

] a

] t
= DA¹2a − R+ LdsrWd,

] b

] t
= DB¹2b − R s3d

with the initial conditions asr ,0d=0, bsr ,0d=r, and the
boundary conditionbs` ,td=r. Hereasr ,td andbsr ,td are the
mean local concentrations ofA andB which, by symmetry,
we assume to be dependent only on the radius, andRsr ,td is
the macroscopic reaction rate.

To simplify the problem essentially we will first assume,
as usual,DA=DB=D. The initial density of the sea,r, defines
a natural scale of concentrations and a characteristic length
scale of the problem—the average interparticle distance,
=r−1/d. So, by measuring the length, time, and concentration
in units of , , ,2/D, and r, respectively, we introduce the
dimensionless source strengthl=L,2/D and the dimension-
less reaction constantk=k/,sd−2dD. Defining then the differ-
ence concentrationssr ,td=asr ,td−bsr ,td we come from Eq.
(3) to the simple diffusion equation with source

] s/] t = ¹2s+ ldsrWd s4d

at the initial and boundary conditionsssr ,0d=ss` ,td=−1.
According to Eq.(4) in the course of injection in the vicinity
of the source there arises a region ofA-particle excess,s.0,
which expands with time. The central idea of the paper is
that, by analogy with the Galfi-Racz problem, a narrow re-
action front has to form at this region boundary, for which
the law of motion,r fstd, according to the QSA, can be de-
rived from the remarkably simple conditionssr f ,td=0. Then,
under the assumption that on the scaler f the front widthw
can be neglected,w/ r f !1, i.e., settinga=s,b=0 at r , r f,
whereasa=0,b= usu at r . r f, the number of survivingNAstd
and that of dyingN3std A particles are immediately derived
from the condition

NA = lt − N3 = VdE
0

r f

ssr,tdrd−1dr s5d

with V1=2,V2=2p ,V3=4p. By calculating in the limit
w/ r f !1 the current of particles in the vicinity of the front,
J=−]s/]r ur=r f

, from Eq. (2) one can easily obtain the law
wstd and define, in the end, a self-consistent condition of
crossover to a quasistatic scaling regime(1). We start with an
analysis of the behavior ofr fstd , NAstd, andN3std for each
dimension separately.

In 1D the solution to Eq.(4) has the form

ssr,td = sÎl2tdierfcsr/2Îtd − 1, s6d

whence, according to the conditionssr f ,td=0, the equation
of motion of the reaction front center,r fstd, is

ierfcsr f /2Îtd = 1/Îl2t, s7d

where ierfcszd=ez
`erfcsvddv=e−z2

/Îp−z erfcszd. From Eqs.
(6) and (7) it formally follows that an excess ofA particles
forms in a timetc=p /l2. It is, however, clear that a con-
tinual approximation comes into play at timest
@maxs1,1/ld; therefore at early island formation stages one
can distinguish two qualitatively different island growth re-
gimes: (i) l!1, when the island formation proceeds under
conditions of death of the majority of injected particles, and
(ii ) l@1, when the island forms long before the beginning of
intensive annihilation. Let us consider first the limitl!1. In
this limit the interval between injection acts,dtl=1/l, is
quite large; therefore in the case of a perfect reaction each
injected particle dies long before the next one appears until
the distance to the nearest sea particle,,lt−Ît, becomes
comparable with the characteristic diffusion lengthÎdtl.
From this, for the time of beginning of injected particle ac-
cumulation, we findtb~ tc~l−2, which reveals the sense of
tc. Assuming e=st− tcd / tc!1 we havez f =r f /2Ît!1, and
takingk not to be too small[9] sk.Îld from the fluctuation
law w,1/ÎJ and Eqs. (5)–(7) we obtain r f /w,ÎNA

,e /Îl andtf / tJ~l2. Thus, the condition of crossover to the
regime of a quasistatic front ise@Îl. Defining then a mini-
mal island by the conditionr f /w,NA,1 for the island for-
mation time, we findtb, tcs1+Îld and conclude that atl
!1 Eqs.(5)–(7) describe the island evolution over the whole
interval from tc to t→`. In the long-time limitT= t / tc@1
from Eq.(7) it follows thatz f @1 and we can rewrite Eq.(7)
in the form 2ez f

2
z f

2=ÎT, whence we obtain theexactasymp-
totics

r f = Î2t ln Ts1 − ln lnT/ln T + ¯ d, s8d

and from Eqs. (5), (6), and (8) we find NA

=ltf1−OsÎln T /Tdg ,N3=r fs2+z f
−2+¯ d=Î8t ln T. Con-

sider now the limitl@1. It is evident that in this limit a
multiparticle “cloud” forms long before the beginning of no-
ticeable annihilation; therefore the stage of the developed
reaction(8), t@1s@tcd, is preceded here by a stage of purely
diffusive expansion of the cloud, 1/l! t!1. The statistical
theory of diffusive cloud expansion has been developed re-
cently in the work[15]. According to[15] in the “collective”
regime slt@1d the “radius” of a 1D cloud grows(in our
units) by the lawr+=Î4t lnsltd. Remarkably,r+ andr f “join”
exactly in the front formation zonest,1,r+, r fd whereas at
t@1 r f begins to grow more slowly thanr+, as it has to. So,
forming in qualitatively different regimes fromf=N3 /NA
@1 sl!1d to f!1 sl@1d the 1D island at anyl crosses
over to the universal growth regime(8) with an unlimited
decay of the dying particle fractionf~Îln T /T→0. It re-
mains for us to reveal the conditions of quasistaticity of the
front (8). According to Eq.(6), in the limit t ,T@1, the cur-
rent J,Îln T / t. Thus assumingk not to be too small
sk.ÎJd we find w,J−1/2,st / ln Td1/4, whence w/ r f

,st ln3Td−1/4 andtf / tJ,st ln Td−1/2. As z f @1, the conditions
w/ r f ,tf / tJ!1 ought to be supplemented by a more strict
requirement of equality of the currents at both sides of the
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front, w!L=−sd ln J/drd−1ur=r f
=r f /2z f

2. Calculating w/L
,sln T / td1/4 we arrive at the requirementt@maxstc, ln Td.

In 2D the solution to Eq.(4) has the form

ssr,td = − sl/4pdEis− r2/4td − 1, s9d

whence, according to the conditionssr f ,td=0, the equation
of motion of the reaction front centerr fstd is

Eis− r f
2/4td = − 4p/l. s10d

Here Eis−z2d=−ez2
` dve−v /v is the exponential integral, which

has the asymptotics Eis−z2d=lnsgz2d+¯ at z2!1

sg=1.781…d and −e−z2
/z2+¯ at z2@1. From Eq.(10) it

follows that r f grows by the law

r f = 2Îat, s11d

wherea is the root of the equation Eis−ad=−l* /l ,l* =4p
and has the asymptoticsa=e−l* /l /g at l!l* and a
=lnsl /l*ad at l@l* . From Eqs.(5), (9), and(11) it follows
that

NA = lts1 − e−ad, N3 = lte−a. s12d

We conclude that in 2D the island growth ratea and the
dying-to-surviving particle ratiof do not vary in time: at
large l@l* the majority of particles survive,f, ln l /l,
whereas at smalll!l* , the majority of particles die,
f,el* /l. The most interesting consequence of Eq.(10) con-
sists in the exponentially strong decrease of the growth rate
in the regionl,1. Defining a minimal island through the
condition NA,1 for its formation time atl,1, we have
tb,el* /l /l, whence it is seen that atl!l* the island growth
is actually suppressed. Calculating the currentJ
=l /l*e

aÎat for the scaling of the reaction zone from Eq.(2)
we find w,st / twd1/6,tw=skl /eaÎad2. At l!l* this yields
Îtf / tJ!w/ r f ,stb/ktd1/3, whereas atl@l* we haveÎtf / tJ
!w/L,sln l /ktd1/3. Thus, crossover to the quasistatic re-
gime occurs at timeskt@ tb andkt@ ln l, respectively(note
that k,1, being,1 for a perfect reaction).

In 3D the solution to Eq.(4) has the form

ssr,td = sl/4prderfcsr/2Îtd − 1, s13d

whence, according to the conditionssr f ,td=0, the equation
of motion of the reaction front centerr fstd is

erfcsr f/2Îtd = 4pr f/l. s14d

From Eq.(14) it follows that z fstd decreases indefinitely so
that at large t / ts@1 the front radius, by the law
r f =rsf1−OsÎts/ tdg with the characteristic timets=sl /l*d2,
reaches a stationary value

r fst/ts → `d = rs = l/l* . s15d

According to Eqs.(5), (13), and (14), in this limit NA

=s2p /3drs
3f1−OsÎts/ tdg ,N3=ltf1−Osts/ tdg; therefore, in

contrast to the 1D case, at anyl all the injected particles die.
The steady-state currentJs=l* /l, whence, according to Eq.
(2), ws,sl /l*kd1/3 and ws/ rs,sl* /lÎkd2/3. Defining a
minimal stationary island through the conditionws/ rs,1,
we conclude that in the 3D case the island forms only when

the injection rate exceeds acritical value lc,l* /Îk. The
maximal value ofk, attainable in the perfect reaction limit, is
kp,s /, (s being the size of particles); thereforelc.l*
@1. By rewriting Eq.(14) in the form erfcsz fd /z f =2Ît / ts,
one can easily see that at high injection ratesl /l* @1 the
stationary stagest@ tsd is preceded by an intermediate stage
1! t! ts wherein the island grows by the law

r f = Î2t lnsts/tdf1 − lnsÎpvd/v + ¯ g, s16d

wherev=lnsts/ td. According to Eqs.(5), (13), and (16), at
this stage NA=ltf1−Osv3/2Ît / tsdg ,N3=s4p /3dr f

3

3f1+Osv−1dg and therefore the majority of particles are still
surviving, f,v3/2Ît / ts!1. Calculating the currentJ
,Îv / t, we find from Eq.(2) w,st /k2vd1/6, whenceÎtf / tJ
!w/L,sv /ktd1/3. Thus, the formed front condition reads
t@ lnsts/ td /k. According to [15] the radius of a 3D cloud,
which expands in the absence of reaction, in our units has the
form r+=Î2t lnfsls /,d2t /4pg. Comparingr+ andr f suggests
that r f begins to lag behindr+ at times t@, /s,1/kp, in
remarkable agreement with the above estimation.

To sum up the above, as key results we distinguish(a) a
self-consistent analytic descriptionof the island growth from
the moment of its formation and(b) anomalously slowisland
growth at l,l* in 2D and complete suppressionof its
growth at l,lc in 3D, which contrast sharply with the
growth asymptotics in a static sea[12].

Let us now extend the analysis to the general case
0,D=DB/DA,`, nondimensionality with respect toD
=DA being retained. We present the final results here; a de-
tailed discussion will be given elsewhere.

For d=1, comparing our results with the results of Ref.
[12], we find that the long-t asymptotics(LTA ) (8) for D
=1 converges to the LTA forD=0. We thus conclude that the
growth of the 1D island does not depend asymptotically on
the diffusivity of B particles. This conclusion is a conse-
quence of the evident fact that atr f /ÎDt@1 particlesB can
be regarded as effectively static, so asr f /Ît~Îln t→` the
LTA of the island growth at any 0,D,` must converge to
the LTA for a static sea. In the interval 0,D,1 the time of
crossover to the LTA does not alter appreciably, although the
time of A-particle accumulation,tb, shifts considerably at
small l (comparinglt−ÎDt with Îdtl we find that in the
intervalD!Îl!1 the value oftb~l−3/2 does not depend on
D, whereas atÎl!D it grows with D by the law tb
~D /l2). At D@1 the time of crossover to the LTA becomes
exponentially large,t@eD /l2; therefore the transient dynam-
ics in this limit require special considerations.

In the 2D case the solution of the problem with a source
possesses a remarkable property:ssr ,td= fsr /Îtd. Using this
property and assumingw/ r fst→`d→0, it is easy to check
that the solution of Eq.(3) has to reada=−sl /4pdEis−z2d
−A ,b=0 atr , r f anda=0,b=1+BEis−z2/Dd at r . r f, with
z=sr /2ÎtdsA ,B=constd. Equalizing theA andB currents at
r =r f, we come to the laws(11) and (12) with the exact
equation fora at arbitraryD:

Eis− a/Dd = − s4pD/ldeasD−1d/D. s17d

In the limit D!1 from Eq.(17) it follows that
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a , 5De−l*D/l/g, l/l* ! D,

l/l* , D ! l/l* ! 1,

lnsl/l*ad, l/l* @ 1.
6

In the opposite limitD@1 from Eq.(17) it follows that

a ,5De−l* /l̃/g, l̃/l* ! ln−1D,

lnfl̃ lnsD/ad/l*g, ln−1D ! l̃/l* ! eD,

lnsl/l*ad, l̃/l* @ eD,
6

where l̃=l /D. Thus, for large differences of diffusivities,
we find three characteristic growth regimes:a!a−
=mins1,Dd (I), a−!a!a+ (II ), and a@a+=maxs1,Dd
(III ). In regime I, the majority of particles die, and the island
growth rate does not depend onDA. In regime III, the ma-
jority of particles survive, and the island growth rate does not
depend onDB. Leaving aside here the intermediate regime II,
we distinguish the central fact: at any finiteD, as l de-
creases, the island growth crosses over to the regime of “ex-
ponential suppression” I, which disappears only in the limit
D→0. According to Eq.(17) the boundary of this regime
(with accuracy to a logarithmic factor at largeD) does not
depend onDA and in dimensional units is defined by the
conditionL,L* =4prDB.

For d=3, one can easily check that in the general case
DÞ0, as in the caseD=1, the 3D island has to reach a
stationary state asymptotically. Indeed, assumingws/ rs→0
in the steady-state limitt→` from Eq. (3), we find as
=Qsrs−rdDsrs/ r −1d ,bs=Qsr −rsds1−rs/ rd, where Qsxd is
the Heaviside step function and the stationary radius

rs = l/l*D = L,2/4pDB

does not depend onDA. For the particle number we find
NA

s =s2p /3dDrs
3,sl /l*d3/D2, whence we obtain the lower

island formation boundaryl /l* .D2/3 and conclude that the
mean island densitykals=D /2 does not depend onl: the
island is always concentrated(with respect to the sea) at
D@1 and is always rarefied atD!1. According to[10] for
DÞ1 ws,sD /kJd1/3,srs/kd1/3, whence it follows that
ws/ rs,srs

2kd−1/3. Thus the necessary condition for 3D island
formation takes the form

l . lc , sl*D/Îkdmaxs1,Îk/D2/3d,

which in dimensional units reads L.Lc

,s4pDB
ÎrDA/kdmaxf1,Îksr /DADB

2d1/3g.
We have been unable to describe analytically the com-

plete kinetics of crossover to the steady state for arbitrary
DÞ1. However, in the interval 0,D,1 the intermediate
asymptotics of 3D island growth can be revealed based on
simple arguments. Indeed, atD,1 in the limit ÎDt@ r f we
have r f , rs. In the opposite limitÎDt! r f the sea is effec-
tively static; therefore the island ought to grow by the law
r f ,sltd1/3 [12]. From both conditions for the crossover time
we find ts~l2/D3 so that atD!1 in the intervalt, ts the
particle number grows by the lawNA~ sl5/2td2/3 and the is-
land density decays tokals by the lawkal~ sl2/ td1/3. In the
limit D→0 it follows thatlc→0,rs→` ,ts→`, and we are
coming back to unlimited island growth at arbitrary finitel.
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