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Diffusion-controlled annihilation A+B—0: The growth of an A-particle island
from a localized A source in the B-particle sea
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We present the growth dynamics of an island of partiélésjected from a localized\ source into a sea of
particlesB and dying in the course of diffusion-controlled annihilatidrrB— 0. We show that in the one-
dimensionak1D) case the island grows unlimitedly at any source stredgtand the dynamics of its growth
does not depend asymptotically on the diffusivity Bfparticles. In the 3D case the island grows only at
A> A, achieving asymptotically a stationary st@satic island. In the marginal 2D case the island unlimit-
edly grows at any\ but at A <A. the time of its formation becomes exponentially large. For all cases the
numbers of surviving and dyind particles are calculated, and the scaling of the reaction zone is derived.
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For the last two decades the reaction-diffusion sysfem currentJ=J,=Jg Of particles arriving at the reaction zone.
+B—0, where unlike speciea andB diffuse and irrevers- The second time scalgxw?/D is the equilibration time of
ibly react in ad-dimensional medium, has acquired the statushe reaction front. Assuming/t;<1 from the QSA in the
of one of the most popular objects of research. This attracmean-field case with equal species diffusivitiegg=D it
tively simple system, depending on the initial conditions,follows that[3,8]
displays a rich variety of phenomena, and, depending on the
interpre_tation ofA andB (phemic_al reagents, quasiparticles, R~ Jw, w~ (D2JK)3, )
topological defects, etg.it provides a model for a broad
spectrum of problem$l]. A crucial feature of many such . . _
problems is the dynamicaeaction front—a localized reac- whereas '1?2 the 1D case acquires the-independent form
tion zone which propagates between domains of unlike spe- ~(D/J)7*[3,5,9. The most important feature of the QSA

cies. The simplest model of a reaction front, introduced mordS thatw and Ry depend ont only through the boundary

than a decade ago by Galfi and Rd@, is a quasi-one- current Jt), which can be calculated analytically without
dimensional model for two initially separated reactants uni-knowing the concrete form o. On the basis of the QSA a
formly distributed on the left sidéx<0) and on the right 9eneral description of the systeA+B—0 with initially
side (x>0) of the initial boundary. Taking the reaction rate SeParated reactants has been obtained for arbitrary diffusion
in the mean-field formR(x,t)=ka(x,t)b(x,t) (k being the coefficients[10]. These results are in full agreement with

reaction constaniGalfi and Racz discovered that in the long- extended numerical calculations and have been generalized

time limit kt— <0 the reaction profildR(x,t) acquires the uni- recently to the case of nonmonotonic _front motidn].
versal scaling form The purpose of the present paper is to apply the QSA to

the long-standing problem of growth of @aparticle island
x—xf> from a localizedA source in a unifornB-particle sea. This

(1) important problem was first analyzed by Larrakteal. [12]

for the special case of a static séaz=0). Assuming that
wherex; > t*2 denotes the position of the reaction zone cen-diffusing A particles are injected at a single point into a
ter, Ry« t™# is the height, andvet® is the width of the reac- reactived-dimensional substrate and instantaneously react
tion zone. Subsequently, it has been shd®a7] that the  with B upon contact, Larraldet al. have studied the growth
mean-field approximation can be adoptediatd,=2 [with dynamics of the reacted region radiyét) and the numbers
logarithmic corrections in the two-dimension@D) casé, of dying and survivingA particles. Considering the reaction
whereas in 1D systems fluctuations play the dominant rolefront dynamics as a Stefan problem, they have, in particular,
Nevertheless, the scaling lag) takes place in all dimen- shown that at any source strengtrasymptotically grows by
sions witha=1/6 atd=d, anda=1/4 atd=1, so thatatany the laws(tInt)¥?, t*2 andt¥® at d=1, 2, and 3, respec-
d the system demonstrates a remarkable property: on thiévely. Subsequently, those results were generalized to the
diffusion length scalé.p =t the width of the reaction front cases of imperfect reactiofi3] and diffusion with a bias
asymptotically contracts unlimitedlyw/Lp—0 as t—oo. [14]; however, as iM12], the B particles were always pre-
Based on this property a general concept of the front dynamsumed “frozen.” In this Brief Report we present a theory of
ics, the quasistatic approximatiqi@SA), has been devel- growth of ad-dimensionalA island for the physically most
oped[3,5,8,9. The QSA consists in the assumption that forimportant situation when botA andB particles are mobile.
sufficiently long times the dynamics of the front is governedin the framework of the QSA we first consider the simplest
by two characteristic time scales. One time scale'standard” case with equal species diffusivities, and then we
t;=—(d In J/dt)"* controls the rate of change in the diffusive extend the obtained results to the case of arbitrary nonzero
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diffusivities, thus revealing a rich general picture of the is- ierfo(r /2\1) = 14, 7)
land growth ford=1, 2, 3.

Let pzirticlesA be injected at=0 with a rateA at the \here ierf(ﬁg):fzcerfc(v)dvze‘éz/\s;—é’erfc(g)_ From Egs.
point r=0 of the uniformd-dimensional sea of particleB, (6) and (7) it formally follows that an excess oA particles
distributed with a density. ParticlesA and B diffuse with ~ forms in a timet,=#/\?. It is, however, clear that a con-
nonzero diffusion constani3, g and upon contact annihilate tinual approximation comes into play at times
with some nonzero probabilith+B— 0. In the continuum >max1,1/\); therefore at early island formation stages one
version this process can be described by the reactiorean distinguish two qualitatively different island growth re-
diffusion equations gimes: (i) A<1, when the island formation proceeds under

Ja Jb conditions of death of the majority of injected particles, and
— =D, V?a-R+A4&F), —=DgV’h-R (3) (i) A>1, when the island forms long before the beginning of
at at intensive annihilation. Let us consider first the limi< 1. In
with the initial Conditionsa(r,0)=0, b(r,0)=p, and the thlS limit the interval between injection acté‘t}\:l/)\., is
boundary conditior(e<,t)=p. Herea(r,t) andb(r,t) are the quite large; t_heref_ore in the case of a perfect reaction eac_h
mean local concentrations @ and B which, by symmetry, injected particle dies long before the next one appears until

we assume to be dependent only on the radius,Ringd) is the dlstatr;lce tqtr:hfh near:est stea_t ?art('ff}?’t._”’t’ Ibecqmmes
the macroscopic reaction rate. comparable wi e characteristic diffusion lenggldt,.

To simplify the problem essentially we wil first assume, From this, for the time of beginning of injected particle ac-

) : =5 .
as usualp,=Dg=D. The initial density of the sea, defines cun;ulatlorj, We_?tn_ctb)olcttcz)i ’ WT:Ch re\ieallsz'ﬁ?i iensedof
a natural scale of concentrations and a characteristic Ienglth' AssUmIng e={t=1o) /e we ?rvegf—rf \ > an
scale of the problem—the average interparticle distafice [@King« not to be too small9] (x> V) from the fluctuation

~ . I
=p 1. So, by measuring the length, time, and concentratior@W W~1/vJ and Egs. (5~«7) we obtain ri/w~ Ny
in units of ¢, ¢2/D, and p, respectively, we introduce the ~€/\ andt/ty=<A% Thus, the condition of crossover to the
dimensionless source strengtk A¢2/D and the dimension- "€gime of a quasistatic front is>vA. Defining then a mini-
less reaction constamt=k/€'@2D. Defining then the differ- Mal island by the conditions/w~ N~ 1 for the island for-
ence concentration(r ,t)=a(r,t)=b(r,t) we come from Eq. Mation time, we findt,~t.(1+y\) and conclude that at

(3) to the Simp|e diffusion equation with source <1 Eqs(5)—(7) describe the island evolution over the whole
5 interval fromt, to t—occ. In the long-time limit7=t/t.>1
dsldt=V7s+\&(r) (4)  from Eq.(7) it follows that ;> 1 and we can rewrite Eq7)

at the initial and boundary conditiorsr,0)=s(c,t)=-1.  in the form 2¢1=\T, whence we obtain thexactasymp-
According to Eq(4) in the course of injection in the vicinity totics

of the source there arises a regionfeparticle excesss> 0, —

which expands with time. The central idea of the paper is r=\2tIn 71 =InIn7In 7+ ---), (8)
that, by analogy with the Galfi-Racz problem, a narrow re- i

action front has to form at this region boundary, for which@nd —from_Egs. (5), (6), and (8) we find N,
the law of motion,r(t), according to the QSA, can be de- =M[1-OWINTI'T)], Ny =r(2+{"+---)=\8tIn 7. Con-
rived from the remarkably simple conditisr;,t)=0. Then,  Sider now the limitA>1. It is evident that in this limit a

under the assumption that on the scaléhe front widthw multiparticle f‘c_lou_d” forms long before the beginning of no-
can be neglectedy/r;<1, i.e., settinga=s,b=0 atr<r; ticeable annihilation; therefore the stage of the developed

whereasa=0,b=|g| atr>ry, the number of survivingN(t) reaction(8), t>1(>t,), is preceded here by a stage of purely

and that of dyingN.(t) A particles are immediately derived diffusive ex_panfsion of the Cloud,_ 1Kt<1. The statistical
from the condition theory of diffusive cloud expansion has been developed re-

cently in the work{15]. According to[15] in the “collective”
regime (\t>1) the “radius” of a 1D cloud growsin our
units) by the lawr, =4t In(\t). Remarkablyr., andr; “join”
exactly in the front formation zong~ 1,r, ~r;) whereas at
with Q,=2,0,=2m,Q3=4x. By calculating in the limit t>1 r, begins to grow more slowly than, as it has to. So,
w/rg<1 the current of particles in the vicinity of the front, forming in qualitatively different regimes fron=N, /N,
J=-dsldr|;=,, from Eq.(2) one can easily obtain the law >1 (\<1) to <1 (\>1) the 1D island at any crosses
w(t) and define, in the end, a self-consistent condition ofover to the universal growth regim@®) with an unlimited
crossover to a quasistatic scaling regifhe We start with an  decay of the dying particle fractiogoc yIn 7/7—0. It re-
analysis of the behavior afi(t), Na(t), andN,(t) for each  mains for us to reveal the conditions of quasistaticity of the

I
Np=At—- N, = Qdf s(r,t)rddr (5)
0

dimension separately. front (8). According to Eq.(6), in the limitt,7>1, the cur-
In 1D the solution to Eq(4) has the form rent J~+In 7/t. Thus assumingx not to be too small
J— - / : 112 1/4
s(r.t) = (\N2jierfo(r/2y0) - 1, ©) (k>+VJ) we find w~J (t/In7)**,  whence w/r¢

~ (tIn®7)" Y4 andt;/t;~ (t In 7)"Y2 As {>1, the conditions
whence, according to the conditicu(r¢,t)=0, the equation w/r¢,t;/t;<<1 ought to be supplemented by a more strict
of motion of the reaction front center(t), is requirement of equality of the currents at both sides of the
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front, w<L=—(dIn J/dr)‘1|r:rf=rf/2§$. Calculating w/ L the injection rate exceeds @itical value )\C~)\*/\s’7<. The
~ (In 77t)Y* we arrive at the requirement maxt,,In 7). maximal value ofk, attainable in the perfect reaction limit, is

In 2D the solution to Eq(4) has the form kp~olt (o being the size of particlgsthereforen.> .
>1. By rewriting Eqg.(14) in the form erf¢{;)/ =2t/

__ (e28) —

S(r,t) == (M4m)Ei(-r7/4) - 1, (9 one can easily see that at high injection ratéa.>1 the
whence, according to the conditicstr;,t)=0, the equation ~Stationary stagét>ty) is preceded by an intermediate stage
of motion of the reaction front centeg(t) is 1<t<tswherein the island grows by the law

Ei(- r2/4t) = - 4m/\. (10) re=v2tIntdt[1 - InVrw)w+ -1, (16)

Here E{-{?)=~[dve™/v is the exponential integral, which where w=In(ts/t). According to Eqgs(5), (13), and(16), at
has the asymptotics Eifd)=In(y?)+-- at 2<1 this stlage NA:)\t[l—O(wS’_Z\fF/ts)],Nx?(4ﬂ/3)r? .
(y=1.781.) and —e‘42/§2+~-- at 2>1. From Eq.(10) it ><[1?|-(.J(a) )] an%/ghe_refore the majorl_ty of particles are still
follows thatr, grows by the law surMng, <;/>_~w Jt/ts<<1. Calculating the currentd

_ ~vwlt, we find from Eq.(2) w~ (t/ K*w)¥®, whence\t;/t,
re=2Vat, (11) <w/L~(w/«t)Y3, Thus, the formed front condition reads
t>In(ts/t)/ k. According to[15] the radius of a 3D cloud,
which expands in the absence of reaction, in our units has the
formr, =2t In[(Aa/€)?t/41r]. Comparing , andr; suggests
thatr; begins to lag behind, at timest>{/o~1/x,, in
remarkable agreement with the above estimation.
Npo=At(1-€9), Ny=Ate“ (12 To sum up the above, as key results we distingy&ta
self-consistent analytic descriptiaf the island growth from
the moment of its formation angh) anomalously slovisland
growth at A<\« in 2D and complete suppressionf its
growth at A<A. in 3D, which contrast sharply with the
growth asymptotics in a static s¢&2].

Let us now extend the analysis to the general case
<D=Dg/Dp<», nondimensionality with respect t®
=D, being retained. We present the final results here; a de-
tailed discussion will be given elsewhere.

For d=1, comparing our results with the results of Ref.
[12], we find that the lond-asymptotics(LTA) (8) for D
=1 converges to the LTA foP=0. We thus conclude that the

—_— — growth of the 1D island does not depend asymptotically on
\stf/t3<w/rf~(tb/lf/<§)l’3' whereas at>\. we have\ti/ty e giffusivity of B particles. This conclusion is a conse-
<w/L~(In\«t)™= Thus, crossover to the quasistatic re- q,ence of the evident fact that @t \Dt> 1 particlesB can
gime occurs at timest>t, and «t>1In )\3 respectivelynote  pe regarded as effectively static, so ras\f'foc JInt— o the
that k<1, being~1 for a perfect reaction LTA of the island growth at any € D <« must converge to

In 3D the solution to Eq(4) has the form the LTA for a static sea. In the intervakOD < 1 the time of
s(r,t) = ()\/47-rr)erfc(r/2\@) -1, (13) crossover to the LTA does no_t alter ap.preciably, although the
time of A-particle accumulationt,, shifts considerably at
whence, according to the conditis(ry,t)=0, the equation  small (comrparing)\t—\s’ﬁ with \'ét, we find that in the
of motion of the reaction front centef(t) is interval D < Y\ <1 the value ot,\"*'2 does not depend on
[ D, whereas atyA<D it grows with D by the law t,
erfo(r/2\t) = 4at /. (14 «D/\?). At D>1 the time of crossover to the LTA becomes
From Eq.(14) it follows that £;(t) decreases indefinitely so exponentially larget>eP/\? therefore the transient dynam-
that at large t/ts>1 the front radius, by the law ics in this limit require special considerations.
re=rd1-0(t/t)] with the characteristic timé,=(\/\+)?, In the 2D case the solution of the problem with a source
reaches a stationary value possesses a remarkable propesty;t)=f(r/yt). Using this
property and assuming/r¢(t— ) —0, it is easy to check
Fi(t/ts— %) =rs= M. (195 that the solution of Eq(3) has to reach=—(\/4m)Ei(-{?)
According to Egs.(5), (13), and (14), in this limit Na —A,b=Qatr<rf anda=0,b=1+BEi(-£?/D) atr >r;, with
=(2m/3)rd1-0O(t/t)],Ny =\[1-O(t/t)]; therefore, in  {=(r/2yt)(A,B=cons}. Equalizing theA andB currents at
contrast to the 1D case, at anall the injected particles die. r=r¢, we come to the lawg1l) and (12) with the exact
The steady-state curred§=\./\, whence, according to Eq. equation fora at arbitraryD:
(2), We~ (M Nr)® and wy/rs~ (\-/N\Vk)%3. Defining a Ei(- a/D) = — (4mDIN)e P-IIP 17)
minimal stationary island through the condition/rgs~1, '
we conclude that in the 3D case the island forms only whenn the limit D<1 from Eq.(17) it follows that

where a is the root of the equation Eia)=—N«/\ ,\«=47
and has the asymptotica=e™*/y at A<\. and «
=In(N/Aa) at A> . From Eqs(5), (9), and(11) it follows
that

We conclude that in 2D the island growth rateand the
dying-to-surviving particle ratiop do not vary in time at
large A>\. the majority of particles survive¢g~In\/\,
whereas at small <\., the majority of particles die,
¢~ e The most interesting consequence of Eld) con-
sists in the exponentially strong decrease of the growth rat8
in the region\ <1. Defining a minimal island through the
condition Ny~ 1 for its formation time at\ <1, we have
t,~ e\, whence it is seen that at< \. the island growth
is actually suppressed. Calculating the curreidt
=\/\.e*/at for the scaling of the reaction zone from E8g)
we find w~ (t/t,)Y,t,,= (kN /e*Ja)?. At A<\. this yields
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IDe—}\*D/)\/,y, M << D, rs= NND = A€2/47TDB
@~ M\, D<M\ <1, does not depend oB,. For the particle number we find
IN(\/\xa), M > 1. NS =(27/3)Dri3~ (\/\+)3/D?, whence we obtain the lower

island formation boundary/\.>D?3 and conclude that the
mean island densitya);=D/2 does not depend oR: the
island is always concentrate@vith respect to the sgaat
D> 1 and is always rarefied &<1. According to[10] for
a~ I\ In(Dla)\],  In"YD <N\ <€D, D#1ws~ (D/ k)3~ (rd k)¥3, whence it follows that
W/ s~ (r2x)~*3. Thus the necessary condition for 3D island
formation takes the form

In the opposite limitD>1 from Eq.(17) it follows that

De MMy, M. <In71D,

INO\V/\«a), M > €l

where X=\/D. Thus, for large differences of diffusivities, N>\, ~ (A*D/\e";)max(l VI D)
we find three characteristic growth regimesi<a. ¢ ’ ’
=min(1,D) (), a-<a<a, (Il), and a>a,=max1,D)  which in dimensional units reads A>A,

(1. In regime 1, the majority of particles die, and the island ~ (47Dg\pDa/k)max 1, k(p/DaD3)*°].
growth rate does not depend @y. In regime lll, the ma- We have been unable to describe analytically the com-

jority of particles survive, and the island growth rate does noplete kinetics of crossover to the steady state for arbitrary
depend orDg. Leaving aside here the intermediate regime I, D+ 1. However, in the interval @ D<1 the intermediate
we distinguish the central fact: at any finie, as\ de-  asymptotics of 3D island growth can be revealed based on
creases, the island growth crosses over to the regime of “eximple arguments. Indeed, ®&<1 in the limit yDt>r; we
ponential suppression” I, which disappears only in the limithaver,~r.. In the opposite Iimit\fﬁ<rf the sea is effec-
D—0. According to Eq.(17) the boundary of this regime tively static; therefore the island ought to grow by the law
(with accuracy to a logarithmic factor at lard®) does not  r,~ (\t)3[12]. From both conditions for the crossover time
depend onD, and in dimensional units is defined by the we find tsxA\?/D3 so that atD<1 in the intervalt <t the
condition A < A.=4mpDg. particle number grows by the lai, o (A\*2)?3 and the is-
For d=3, one can easily check that in the general casgang density decays ta)s by the law(a) e (\2/t)Y3. In the
D#0, as in the cas®=1, the 3D island has to reach a it p_.0 it follows thath,— 0,r,— =, t,— o, and we are
stationary state asymptotically. Indeed, assuming's—0  coming back to unlimited island growth at arbitrary finke
in the steady-state limit—«~ from Eq. (3), we find a5
=O(rg—r)D(rg/r=1),bs=0(r-rgy(1-rg/r), where O(x) is This research was financially supported by the RFBR
the Heaviside step function and the stationary radius through Grant No. 02-03-33122.
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